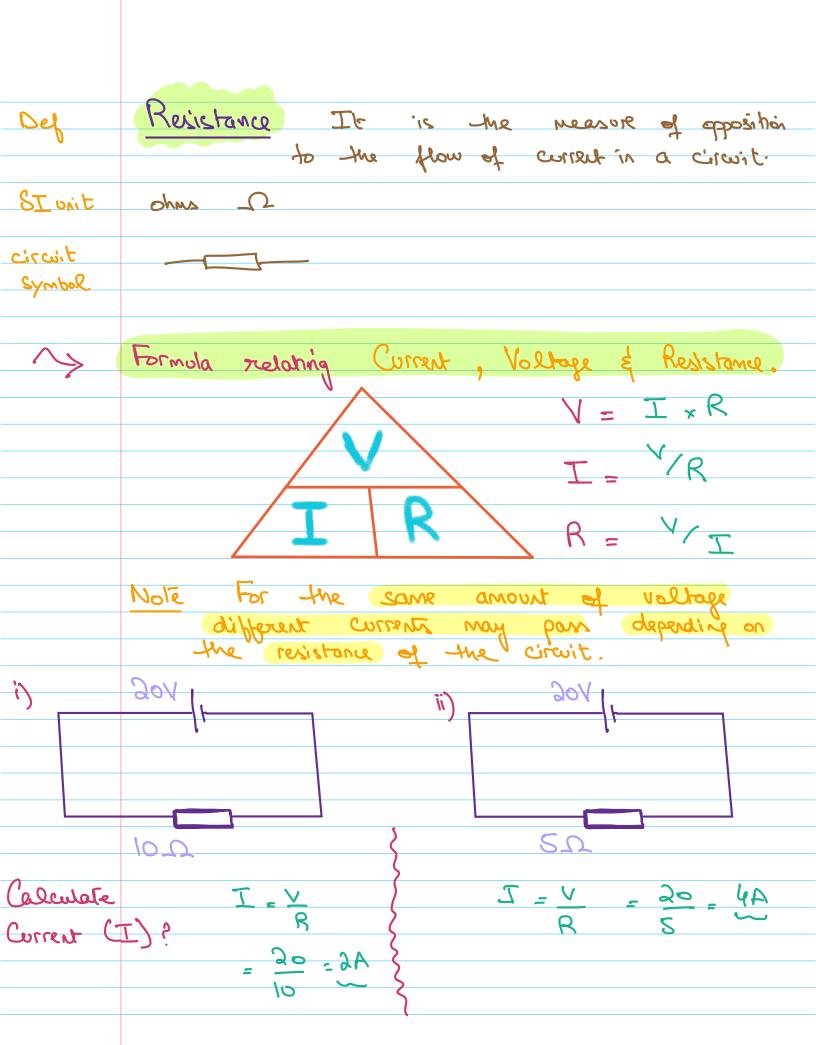


resistance, a filament lamp

as the filament in a filament lamp

Describe the effect of temperature increase on the resistance of a resistor, such


6

	Tasia	Ven akanda ka akta ta	в	Δ	0		Commente	
	Торіс	You should be able to	R	A	6	,	Comments	
4.2	2.2 Electric current			_	_	_		.
1		Define electric current as the charge passing a point per unit time; recall and use						
		the equation	<u> </u>					-
		electric current = chargetime						
		$l = \frac{Q}{t}$						
				_	-	_		-
2		Describe electrical conduction in metals in terms of the movement of free electrons						
3		Know that current is measured in amps (amperes) and that the amp is given by		-		╡		
5		C/s						
4		Know the difference between direct current (d.c.) and alternating current (a.c.)						
								-
5		State that conventional current is from positive to negative and that the flow of						
		free electrons is from negative to positive	님			╡		'
6		Describe the use of ammeters (analogue and digital) with different ranges						-
47	2.3 Electromotive force and p	otential difference						
1		Define e.m.f. (electromotive force) as the electrical work done by a source in						1 -
		moving a unit charge around a complete circuit; recall and use the equation						
		e m f = work done (by a source)						
		charge						-
		$E = \frac{W}{Q}$						
2		Define p.d. as the work done by a unit charge passing through a component;	-		╗╎┍╼	-		
2		recall and use the equation						
		p.d. = work done (by a component)						
		- charge						-
		$V = \frac{W}{Q}$						
3			—	_	┓┟┏╼	-		
З		Know that e.m.f. and p.d. are measured in volts and that the volt is a joule per coulomb (V = J / C)						-
4		Describe the use of voltmeters (analogue and digital) with different ranges						
] -
-					A	~	Ocurrente	
	Торіс	You should be able to	R			G	Comments	
-	5	Calculate the total e.m.f. where several sources are arranged in series						-
	6	State that the e.m.f of identical sources connected in parallel is equal to the		i F		-		
		e.m.f. of one of the sources		ᆈᆫ	L			
4.2.4 Electric circuits								
-	1	Recall and use the equation		1				
-		resistance = <u>p.d.</u> current		┛╟└	L			1
		$R = \frac{W}{I}$						
-	2	Describe an experiment to determine resistance using a voltmeter and an		1				-
		ammeter and do the appropriate calculations						
	3	Recall and use, quantitatively, for a wire, the direct proportionality between		1				
_		resistance and length, and the inverse proportionality between resistance and		비니	L			-
		cross-sectional area		-				
- 2	4	State Ohm's Law, including reference to constant temperature						-
	5	Skotch and availain the current valtage graphs of a resistor of constant			╡╠			-
	ر د	Sketch and explain the current–voltage graphs of a resistor of constant						

Electrical Quartities (Electric Current, Voltage & Revisionce) SI unit. Coulomb. Electric Charges , SI unit. Coulor , symbol 6 Q) positive charge régative charge (élection) (proton Def: <u>Electric Current</u>: It is the rate of flow of electric charge Reference! Formula: Electric Current = Electric Charge time * Speed = distance time Formula in symbols + Speed is the rate of change of distance SI unit: Amperes $s = \frac{d}{t}$ Appratus: Ammeter

Charge -time A lightning flash carries 40 C of charge and lasts for 5.0 ms.
 What is the average current in the flash?
A 0.20A B 8.0A C 200A D 8000A
 T = Q =
_ 40
 0.005
 $A \cos \theta = T$
 The flash on a camera operates when a capacitor discharges through a flash-tube. In 3.2 ms, a charge of 6.0 C passes through the flash-tube. What is the average current in the flash-tube? A 0.019 A B 1.9 A C 19 A D 1900 A
$\frac{I}{t} = \frac{Q}{0.0032} = \frac{6}{1875A}$
 AOOPJ

Cirwit Components + | -_{1--- | F A Cell battery Anneter Fill the blanks X Volmier Bulb resistor 11 11 イト LDR (light dependent) resistor Voriable resistor Thermistor _____ switch (open) heater fuse Switch Buzzer Connechy wise (closed) RA LED (light emilting) diode diode relay

	0 0	
Va	~ _	226
VCL		
	-	•

Current

A digital watch is powered by a 1.3V cell. The cell supplies a current of 4.1×10^{-5} A (0.000041A) for 1.6×10^7 s.

Calculate

(a) the charge that passes through the cell in this time,

Q = I + $4.1 \times 10^{5} \times 1.6 \times 10^{7}$ 1 = = <u>660</u> (2) charge = .

(b) the resistance of the electrical circuit in the watch,

V IR

 $R = \frac{V}{I} = \frac{1.3}{4.1 \times 10^{5}}$ resistance = 32000 Ω [2]

= 31, 707·3 A